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Chapter 1

Throughout, a ring is assumed to be commutative and with unity.

Proposition 0.1 (Exercise 1). Let A be a ring, and let x ∈ A be nilpotent and u ∈ A be a
unit. Then x+ u is a unit, with inverse given by

(x+ u)−1 = u−1
∞∑
k=0

(−xu−1)k

Proof. We may assume x 6= 0, since in that case x+ u = u is a unit. First, consider the case
u = 1. As x is nilpotent, choose n so that xn = 0. Define

y =
n−1∑
k=0

(−x)k = 1− x+ x2 − x3 + . . .+ (−x)n−1

Then we compute

(x+ 1)y =
(
x− x2 + x3 + . . .+ (−1)n−1xn

)
+
(
1− x+ x2 + . . .+ (−x)n−1

)
= 1 + (−1)n−1xn = 1

Thus x+ 1 is a unit. Now let u ∈ A be any unit. Then xu−1 is nilpotent, so by the previous
case, xu−1 + 1 is a unit. Writing

x+ u = u(xu−1 + 1)

We see that x+ u is a unit as well. Concretely, the inverse is

u−1
∞∑
k=0

(−xu−1)k

Note that only finitely many terms are nonzero because xu−1 is nilpotent.
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Proposition 0.2 (Exercise 5). Let A be a ring and let A[[x]] be the ring of formal power
series with coefficients in A. Let ι : A ↪→ A[[x]] be the inclusion.

(a) f =
∞∑
n=0

anx
n ∈ A[[x]] is a unit if and only if a0 is a unit in A.

(b) If f =
∞∑
n=0

anx
n ∈ A[[x]] is nilpotent, then an is nilpotent for all n ≥ 0.

(c) f =
∞∑
n=0

anx
n belongs to the Jacobson radical of A[[x]] if and only if a0 belongs to the

Jacobson radical of A.

(d) The contraction mc = ι−1(m) of a maximal ideal m ⊂ A[[x]] is a maximal ideal of A,
and m is generated by mc = ι−1(m) and x.

(e) Every prime ideal of A is the contraction of a prime ideal in A[[x]].

Proof. (a) Suppose f =
∞∑
n=0

anx
n ∈ A[[x]] is a unit, with inverse f−1 =

∞∑
n=0

bnx
n. Then

1 = (a0 + a1x+ . . .)(b0 + b1x+ . . .) = a0b0 + (a1b0 + a0b1)x+ . . .

So all the nonconstant terms vanish, and a0b0 = 1, hence a0 is a unit.
Conversely, suppose a0 is a unit. By mulitplying by a−10 , we reduce to showing that a

power series of the form 1 + xf is a unit, where f ∈ A[[x]]. We can write down the inverse
to 1 + f explicitly as

(1 + xf)−1 =
∞∑
n=0

(−xf)n = 1− xf + x2f 2 − x3f 3 + . . .

Note that this series makes sense in A[[x]], because we can recursively compute the low
degree terms. The coefficient for the xn term of the resulting power series is determined
by the first n (finitely many) terms 1,−xf, x2f 2, . . . xnfn, so this power series only requires
finite sums in A.

(b) Suppose f =
∞∑
n=0

anx
n ∈ A[[x]] is nilpotent, with fm = 0 for some m. We will prove

that all the ai are nilpotent by induction on i. First, since the constant term of fm is am0 and
fm = 0, am0 = 0, so a0 is nilpotent. For the inductive step, suppose a0, . . . ai−1 are nilpotent.
Since the nilpotent elements form a subring, the element

f −
(
a0 + a1x+ a2x

2 + . . .+ ai−1x
i−1) = xi

(
ai + ai+1x+ ai+2x

2 + . . .
)

is nilpotent. Since xi is not nilpotent, the other factor must be, so by the base case, ai is
nilpotent. This completes the induction.

(c) We denote the Jacobson radical of A by J(A). Let f =
∑
anx

n ∈ A[[x]], and suppose
a0 ∈ J(A). By Proposition 1.9 of Atiyah-MacDonald, 1 − a0b is a unit in A for all b ∈ A.
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Let g =
∑
bnx

n ∈ A[[x]]. The constant term of 1− fg is 1−a0b0, which is a unit in A, so by
part (b), 1 − fg is a unit in A[[x]]. Applying Proposition 1.9 of Atiyah-MacDonald again,
f ∈ J (A[[x]]).

The converse is essentially the same argument. Suppose f ∈ J (A[[x]]). Then 1 − fg is
a unit in A[[x]] for all g =

∑
bnx

n ∈ A[[x]], so by part (b) the constant term 1 − a0b0 is a
unit in A. We can have g with any constant term b0, so 1− a0b is a unit in A for all b ∈ A,
hence by Proposition 1.9, a0 ∈ J(A).

(d) Let m ⊂ A[[x]] be a maximal ideal. Suppose ι−1(m) ⊂ A is not maximal, so there
is an element a ∈ A so that ι−1(m) ( ι−1(m) + (a) ( A. In particular, a 6∈ ι−1(m), so
ι(a) = a 6∈ m. Since m is maximal, m + (a) = A, so there exist m ∈ m, b ∈ A so that

1 = m+ ba (equality in A[[x]])

Since 1, ba ∈ A, we get m ∈ A, so m ∈ ι−1(m). Thus ι−1(m) + (a) = A, which is a
contradiction. Thus ι−1(m) is maximal.

Now we show that m ⊂ A[[x]] is generated by ι−1(m) and x (as an ideal of A[[x]]). Since
0 ∈ J(A), by part (c) x ∈ J(A[[x]]), so x ∈ m. Now note that ι−1(m) = m − (x), so
m = ι−1(m) + (x), which is to say, m is generated by ι−1(m) and x.

(e) Consider following commutative diagram.

A A[[x]]

A[[x]]/(x)

∼=

where A→ A[[x]] is the natural inclusion, A[[x]]→ A[[x]]/(x) is the canonical quotient map,
and A → A[[x]]/(x) is the isomorphism a 7→ a. By Proposition 1.1 of Atiyah-MacDonald,
p 7→ π−1(p) gives a bijection between prime ideals of A[[x]]/(x) and prime ideals of A[[x]]. Via
the isomorphism A ∼= A[[x]]/(x) in our commutative triangle, prime ideals of A correspond
to prime ideals of A[[x]] that contain (x). That is to say, every prime ideal of A is the
contraction of a prime ideal of A[[x]].

Lemma 0.3 (for Exercise 7). Let A be a ring such that for every x ∈ A, there exists a ∈ A
so that x = x2a. Then every prime ideal of A is maximal.

Proof. Let p ⊂ A be a prime ideal. We will show that p is maximal by showing that A/p is
a field. Let x ∈ A/p be nonzero, and choose a representative x ∈ A, so x 6= 0. The relation
x = x2a in A gives x = x2a in A/p, which we write as

x2a− x = x
(
xa− 1

)
= 0

Since p is prime, A/p is an integral domain, so one of the factors is zero. Since x 6= 0 by
assumption, xa = 1, thus x is invertible in A/p with inverse a.

Corollary 0.4 (Exercise 7). Let A be a ring so that every x ∈ A satisfies xn = x for some
n > 1 (depending on x). Then every prime ideal of A is maximal.

Proof. Apply the previous lemma with a = xn−2.
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Exercise 16.
Draw pictures of specZ, specR, specC[x], specR[x]. Solution.

We begin with some analysis applicable to all rings A. Unless A is a field, the point
{(0)} ∈ specA is not in any basic closed set, so (0) is contained in every open set, and the
closure of (0) is specA. More generally, a singleton set {p} ⊂ specA is closed if and only if
p is a maximal ideal.

As a set, specZ is
specZ = {(0)} ∪ {(p) : p prime}

The basic closed sets are

V (E) = {(p) : n ∈ (p),∀n ∈ E} = {(p) : p|n,∀n ∈ E} = {(p) : p| gcd(E)}

where E ⊂ Z. Note that V (E) is finite. Thus the basic open sets are complements these
finite subsets of specZ\(0), and every open set contains the point (0). The subspace topology
on specZ \ (0) is the finite complement topology - all open sets are complements of finite
sets. We depict this as below, using a different marker for the point (0) as a reminder that
this point is different.

∗ • • • . . .

(0) (2) (3) (4) . . .

Since R is a field, the only ideals are (0) and R, so the only prime ideal is (0). So as a set,
specR = {(0)}. Since (0) is the only point, it is a closed and open set. We depict specR as

•
(0)

C is algebraically closed, so the irreducible elements of C[x] are linear polynomials. C[x] is
a PID, so the prime ideals are all principal ideals (x − a) for a ∈ C. There is also the zero
ideal (0). Note that (x − 0) is not the same as (0). So, as a set, we can think of C[x] as
C∪{(0)}, with the point a ∈ C corresponding to the ideal (x− a). The basic closed sets are

V (E) = {(x− a) : f ∈ (x− a), ∀f ∈ E}
= {(x− a) : (x− a)|f, ∀f ∈ E}
= {(x− a) : f(a) = 0,∀f ∈ E}

so the basic closed sets are common zero loci of sets of polynomials. The zero locus of a
family of polynomials is the same as the zero locus of the ideal generated by that family, and
C[x] is Noetherian, so we can always reduce to a finite family of polynomials. A polynomial
has only finitely many roots, so the basic closed sets are finite sets.

Identifying specC[x] with C∪ {(0)} via (x− a)↔ a, we depict specC[x] as the complex
plan, except that the topology is the finite complement topology, and there is an extra point
(0), whose closure is the entire space.
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specC[x] Re

Im *
(0)

R[x] is a PID, but R is not algebraically closed, so there are irreducible nonlinear polynomials.
However, the irreducible polynomials are either linear or quadratic. An irreducible quadratic
must be monic, and the two roots are complex conjugates. Thus the irreducible quadratics
have the form

(x− z)(x− z) = x2 − 2 Re(z)x+ |z|2

We can parametrize these by the upper half-plane of C.

R[x] = {(0)} ∪ {(x− a) : a ∈ R} ∪
{

(x2 − 2 Re(z) + |z|2) : z ∈ C, Im(z) > 0
}

We identify (x− a) with a ∈ R, and (x2 − 2 Re(z) + |z|2) with z ∈ C, Im(z) > 0. The basic
closed sets are

V (E) = {(g) : f ∈ (g),∀f ∈ E}
= {(g) : g|f, ∀f ∈ E}
= {(x− a) : f(a) = 0,∀f ∈ E} ∪

{
(x2 − 2 Re(z) + |z|2) : f(z) = f(z) = 0,∀f ∈ E

}
so as with C[x], we think of V (E) as the common zero locus of the polynomials f ∈ E. Since
R[x] is Noetherian, we need only consider finite sets of polynomials, which have a finite
number of zeroes each, so the basic closed sets are finite subsets. Using our identification,
we think of specR[x] as the real line, union with the open upper half plane Im(z) > 0, along
with a single “fuzzy” point (0) whose closure is the whole space.

specR[x]

Re

Im *
(0)

Proposition 0.5 (Exercise 17). Let A be a ring and let X = specA. For f ∈ A, set

Xf = X \ V (f) = {p ∈ X : f 6∈ p}

Then

1. The sets Xf form a basis of open sets for the Zariski topology on specA.

2. Xf ∩Xg = Xfg.
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3. Xf = ∅ ⇐⇒ f is nilpotent.

4. Xf = X ⇐⇒ f is a unit.

5. Xf = Xg ⇐⇒
√

(f) =
√

(g) (
√
· denotes the radical of an ideal).

6. X is quasi-compact. (Every open cover of X has a finite subcover.)

7. Each Xf is quasi-compact.

8. An open subset of X is quasi-compact if and only if it is a finite union of sets Xf .

Proof. (1) Recall that the Zariski topology is defined by taking the sets V (E) = {p ∈ X : E ⊂ p}
as closed. Let U ⊂ X be open. Then U = X \ V (E) for some E ⊂ A. Then

U = {q ∈ X : E 6⊂ q} = {q ∈ X : ∃f ∈ E, f 6∈ q}

so for f ∈ E, Xf ⊂ U , and hence ⋃
f∈E

Xf ⊂ U

On the other hand, for p ∈ U , choose f ∈ E with f 6∈ p, and then p ∈ Xf , so U ⊂
⋃
Xf .

Thus U =
⋃
Xf , so the xf form a basis of open sets for X.

(2) If p ∈ Xf∩Xg, then f, g 6∈ p. Since p is prime, fg 6∈ p, so p ∈ Xfg, thus Xf∩Xg ⊂ Xfg.
For the reverse inclusion, if p ∈ Xfg, then fg 6∈ p. If f ∈ p, then fg ∈ p since p is an ideal,
so f 6∈ p. Similarly, g 6∈ p, so p ∈ Xf ∩Xg, thus Xfg ⊂ Xf ∩Xg.

(3) If f is nilpotent, with fn = 0, and p ∈ X is a prime ideal of A, then since 0 ∈ p, either
f ∈ p or fn−1 ∈ p. Continuing like this, we conclude that f ∈ p. Thus Xf = ∅. Conversely,
if Xf = ∅, then every prime ideal of A contains f , so f is nilpotent by Proposition 1.8 of
Atiyah-MacDonald.

(4) If f is a unit, the any ideal containing f is A, so no prime ideals contain f , so Xf = X.
Conversely, if Xf = X, then no prime ideals contain f . Then no maximal ideals contain f .
By Corollary 1.3 of Atiyah-MacDonald, every non-unit is contained in a maximal ideal, so
f must be a unit.

(5) Suppose
√

(f) =
√

(g). By symmetry, it is sufficient to show Xf ⊂ Xg. Let p ∈ Xf .

Since
√

(f) =
√

(g), in particular f ∈
√

(g), so there exists n ∈ Z, a ∈ A with fn = ga.
Since f 6∈ p and p is prime, fn 6∈ p, so ga 6∈ p. Then g 6∈ p, so p ∈ Xg. Thus Xf ⊂ Xg.

Conversely, suppose Xf = Xg. By Proposition 1.14 of Atiyah-MacDonald,
√

(f) is equal
to the intersection of all prime ideals containing (f), which is to say,√

(f) =
⋂
f∈p

p =
⋂
p 6∈Xf

p
√

(g) =
⋂
g∈p

p =
⋂
p 6∈Xg

p

Since Xf = Xg, these two intersections are over the same set of prime ideals in X = specA,

so they are the same, thus
√

(f) =
√

(g).
(6) Given an arbitrary open cover of X, we can cover each of the open sets with sets of

type Xf , so we assume our open cover of X is of sets Xfi , i ∈ I.

X =
⋃
i∈I

Xfi
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This says that for every p ∈ X, there exists i ∈ I so that fi 6∈ p. That is, the set {fi}i∈I has
non-empty intersection with the complement of every prime (or maximal) ideal. Thus the
same is true for the ideal generated by all fi, so that ideal is not contained in any maximal
ideal, so it is all of A. Thus we can write 1 ∈ A as a (finite) linear combination of the fi, so
there is a finite subset J ⊂ I and elements ai ∈ A for i ∈ J so that

1 =
∑
i∈J

aifi

Now we claim that
X =

⋃
i∈J

Xfi

Let p ∈ X. Then there exists b ∈ A \ p, and we can write b as

b =
∑
i∈J

baifi

If all fi for i ∈ J were in p, then b ∈ p, so some fi is not in p. Thus p ∈ Xfi , so X is covered
by finite subcover Xfi for i ∈ J .

(7) and (8) I don’t know how to prove these.

Proposition 0.6 (Exercise 18). Let A be a ring and X = specA, and let p ∈ X.

1. {p} ⊂ X is closed if and only if p is a maximal ideal.

2. {p} = V (p) (the overline denotes the closure).

3. q ∈ {p} ⇐⇒ p ⊂ q.

4. X is a T0-space. (For p, q ∈ X distinct, there is a neighborhood of p not containing q,
or there is a neighborhood of q not containing p.)

Proof. (1) Let p be a maximal ideal. Then V (p) = {q ∈ X : p ⊂ q} = {p} is closed.
Conversely, let p be a prime ideal so that {p} is closed. Suppose p is a properly contained

in a maximal ideal m. Since {p} is closed and m ∈ X \ {p} and X \ {p} is open, there exists
f ∈ A so that m ∈ Xf and p 6∈ Xf . Then f ∈ p \m, which contradicts p ⊂ m. Thus p is
maximal.

(2) Recall that the closure of a set is the intersection of all closed sets containing it, so

{p} =
⋂
{p}⊂V

V =
⋂
p∈V

V =
⋂
E⊂p

V (E)

thus {p} ⊂ V (p). For the reverse inclusion, let q ∈ V (p), so p ⊂ q. Then E ⊂ p =⇒ E ⊂ q,
so q ∈

⋂
E⊂p V (E) = {p}.

(3) By part (2), {p} = V (p) = {q ∈ X : p ⊂ q}.
(4) Let p, q ∈ X be distinct. Then at least one of p, q is not a subset of the other, say p

is not a subset of q without loss of generality. Then there exists f ∈ q \ p, so p ∈ Xf and
q 6∈ Xf , so Xf is the required neighborhood of p.
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Definition 0.1. A topological space is irreducible if X 6= ∅ and if every pair of nonempty
open sets in X have nonempty intersection, or equivalently if every nonempty open subset
of X is dense in X.

Proposition 0.7 (Exercise 19). Let A be a ring and X = specA. X is irreducible if and
only if the nilradical of A is a prime ideal. (Even stronger, if the nilradical of A is a prime
ideal, the intersection of any two nonempty open subsets of X contains the nilradical.)

Proof. Let N be the nilradical of A, and suppose N is prime. By Proposition 1.8 of Atiyah-
MacDonald, N is contained in every prime ideal of A. To show that X is irreducible, it
suffices to show that any two nonempty basic open sets Xf , Xg have nonempty intersection.

If Xf is a nonempty basic open set, there is a prime p with f 6∈ p, so f 6∈ N , so N ∈ Xf .
Thus N is contained in every basic open subset, so the intersection of any two basic open
subsets Xf , Xg is nonempty. Thus X is irreducible. (Since every open subset of X contains
some Xf .

Conversely, suppose X is irreducible. To show that N is prime, we show that for f, g 6∈ N ,
the product fg is not in N . Let f, g ∈ A \ N . Since X is irreducible, Xf ∩ Xg = Xfg is
nonempty, so there is a prime p so that p ∈ Xfg, or equivalently, fg 6∈ p. Since N ⊂ p, we
get fg 6∈ N .

Chapter 3

Proposition 0.8 (Exercise 1). Let S be a multiplicatively closed subset of a ring A, and let
M be a finitely generated A-module. Then S−1M = 0 if and only if there exists s ∈ S such
that sM = 0.

Proof. If there exists s ∈ S with sM = 0, then for m
t
∈ S−1M , we have m

t
= 0

1
since

s(m1− 0t) = sm = 0. For the converse, suppose that S−1M = 0. Choose a set of generators
x1, . . . , xn for M . By assumption, xi

1
= 0

1
in S−1M , so there exists s1, . . . , sn ∈ S so that

sixi = 0. Then set s = s1 . . . sn. Then sxi = 0 for each i, so sM = 0.

Proposition 0.9 (Exercise 5). If A is a ring such that for every prime ideal p, the local ring
Ap has no nonzero nilpotent elements, then A has no nonzero nilpotent elements.

Proof. Let a ∈ A be nilpotent, with an = 0. Then
(
a
1

)n
=
(
an

1

)
= 0

1
= 0 in Ap for every

prime ideal p, so a
1

is nilpotent in Ap, so a
1

= 0 in Ap. Thus there exists tp ∈ A \ p so that
tpa = 0 (notably, tp 6= 0).

That is to say, the annihilator Ann(a) is an ideal of A which has nonzero intersection with
the complement of every prime ideal. By Corollary 1.4 of Atiyah-MacDonald, every proper
ideal is contained in some maximal (and prime) ideal, so we conclude that Ann(a) = A.
Thus 1a = a = 0, so zero is the only nilpotent of A.

Remark: As can be seen from the proof of the previous proposition, the hypothesis may be
weakened to get a stronger statement: If A is a ring such that for every maximal ideal p, the
local ring Ap has no nonzero nilpotent elements, then A has no nonzero nilpotent elements.
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Remark: If every localization Ap is an integral domain, it does not follow that A is an
integral domain. It is not even sufficient to have each localization be a field. We give a
counterexample.

Let n ∈ Z be a product of distinct primes, n = p1 . . . pk with k ≥ 2. By the ideal
correspondence between Z and Z/nZ, all prime ideals of Z/nZ are principal, generated by
some pi ∈ Z/nZ. The localization of Z/nZ at (pi) is isomorphic to Z/piZ, which is a field,
and hence an integral domain. However, Z/nZ is not an integral domain.

Proposition 0.10 (Exercise 21(i)). Let A be a ring and S ⊂ A a multiplicative subset.
Let φ : A → S−1A be the canonical homomorphism. Then φ∗ : spec(S−1A) → specA is
a homeomorphism of spec(S−1A) onto its image in specA. (In particular, for f ∈ A, the
image of specAf is Xf , so specAf ∼= Xf .)

Proof. By the ideal correspondence (Proposition 3.11 of Atiyah-MacDonald), extension and
contraction give a bijection between prime ideals of S−1A and prime ideals of A that do not
intersect S, so φ∗ is injective, and imφ∗ = {p ∈ specA : S ∩ p = ∅}. It is sufficient to show
that φ∗ is a continuous and open map.

To show that φ∗ is continuous, it suffices to consider the preimage of the intersection of
imφ∗ with a basic open subset Xf ⊂ specA.

(φ∗)−1 (Xf ∩ imφ∗) = {pe | p ∈ specA, f 6∈ p, p ∩ S = ∅}

To show that this is open in spec(S−1A), we need to show that each pe is contained in a
basic open subset Xa

s
. We claim that pe ∈ X f

1
. If not, then f

1
∈ pe, so we can write f

1
as a

linear combination
f

1
=
∑
i

ai
si
xi

where ai ∈ A, si ∈ S, xi ∈ p. Finding a common denominator, we can rewrite this as

f

1
=

∑
bixi
s

where bi ∈ A, s ∈ S. Then there exists t ∈ S so that

t

(
fs−

∑
i

bixi

)
= 0 or equivalently tfs = t

∑
i

bixi

In the last equality, the right hand side is in p, since xi ∈ p. In the left hand side, t, f, s 6∈ p,
so by primality of p, tfs 6∈ p, which is a contradiction. Thus f

1
6∈ pe, so pe ∈ X f

1
.

Now we show that φ∗ is open. It is sufficient to show that for a basic open subset
Xa

s
⊂ spec(S−1A), the image φ∗(Xa

s
) is open in specA.

φ∗(Xa
s
) =

{
pc | p ∈ spec(S−1A),

a

s
6∈ p
}

To show that this is open in specA, we need to show that each pc is contained in a basic
open subset Xf ⊂ specA for some f ∈ A. Since a

s
6∈ p and p is an ideal, a

1
6∈ p, so a 6∈ pc.

Thus pc ∈ Xa.
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Definition 0.2. Let A, φ, S be as above, and let X = specA. We denote the image of φ∗

by S−1X.

Proposition 0.11 (Exercise 21(ii)). Let f : A → B be a ring homomorphism. Let X =
specA and Y = specB, and f ∗ : Y → X be the induced map p 7→ f−1(p). Identifying
spec(S−1A) with its image S−1X in X, and spec(S−1B) = spec(f(S)−1B) with its image
S−1Y in Y , the induced map (S−1f)∗ : spec(S−1B)→ spec(S−1A) is the restriction of f ∗ to
S−1Y , and S−1Y = (f ∗)−1(S−1X).

In other words, if φ : A→ S−1A and ψ : B → S−1B are the canonical homomorphisms,
the following diagram commutes.

spec(S−1B) spec(S−1A)

S−1Y = imψ∗ S−1X = imφ∗

Y = specB X = specA

(S−1f)∗

ψ∗∼= φ∗∼=

f∗

Proof. Let p ∈ spec(S−1B). Going around the top of the rectangle, we obtain

φ∗(S−1f)∗(p) = φ−1
(

(S−1f)−1(p)
)

= φ−1
{
a

s
∈ S−1A

∣∣∣∣ f(a)

s
∈ p
}

=

{
a ∈ A

∣∣∣∣ f(a)

1
∈ p
}

Going around the bottom of the rectangle, we obtain

f ∗ψ∗(p) = f−1
(
ψ−1(p)

)
=

{
a ∈ A

∣∣∣∣ f(a)

1
∈ p
}

so the images are equal as subsets of A, so they are equal ideals in specA.

Proposition 0.12 (Exercise 21(iii)). Let f : A→ B be a ring homomorphism. Let a ⊂ A be
an ideal, and b = ae be its extension in B. Let f : A/a→ B/b be the induced homomorphism.
If spec(A/a) is identified with its canonical image V (a) ⊂ specA and spec(B/b) is identified
with its image V (b) ⊂ specB, then

(
f
)∗

is the restriction of f ∗ to V (b).
In other words, if πA : A → A/a and πB : B → B/b are the canonical projections, the

following diagram commutes.

spec(B/b) spec(A/a)

V (b) V (a)

specB specA

(f)
∗

π∗
B

∼= π∗
A

∼=

f∗
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Proof. Let p ∈ spec(B/b). Going around the top of the rectangle, we obtain

π∗Af
∗
(p) = π−1A

(
f
−1

(p)
)

= π−1A
{
a+ a ∈ A/a | f(a+ a) = f(a) + b ∈ p

}
= {a ∈ Af(a) + b ∈ p}

Going around the bottom of the rectangle, we obtain

f ∗π∗B(p) = f−1
(
π−1B (p)

)
= f−1 {b ∈ B | b+ b ∈ p} = {a ∈ A | f(a) + b ∈ p}

so the images are equal as subsets of A, so the are equal ideals in specA.

Proposition 0.13 (Exercise 21(iv)). Let f : A → B be a ring homomorphism. Let p ∈ A
be a prime ideal. Then spec(Bp/pBp) is homeomorphic to (f ∗)−1(p).

Proof. Applying Exercise 21(iii) to the ring homomorphism S−1f : Ap → Bp, we obtain the
commutative diagram

spec(Bp/pBp) spec(Ap/pAp)

V (pBp) V (pAp)

specBp specAp

(S−1f)
∗

π∗
B

∼= π∗
A

∼=

(S−1f)∗

where π∗B, π
∗
A are the respective maps induced by the canonical projections Bp → Bp/pBp

and Ap → Ap/pAp. Using Exercise 21(ii) with S = A \ p, we extend our commutative
diagram.

spec(Bp/pBp) spec(Ap/pAp)

V (pBp) V (pAp)

specBp specAp

imψ∗ imφ∗

specB specA

(S−1f)
∗

π∗
B

∼= π∗
A

∼=

(S−1f)∗

ψ∗∼= φ∗∼=

f∗

If b is an ideal of Bp/pBp, then b corresponds to an ideal of Bp containing pBp, which then
corresponds to an ideal of B containing pe. The image under f ∗ of such an element is then
p. Conversely, if q ∈ (f ∗)−1(p) ⊂ specB, then

f−1(q) = p =⇒ f(p) ⊂ q =⇒ pe ⊂ q =⇒ q ∩ (B \ pe) = ∅
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that is, q ∈ imψ∗, so q corresponds to an ideal qBp ⊂ Bp. Since pe ⊂ q, qBp contains pBp,
thus qBp corresponds to an ideal of Bp/pBp.

That is, the image of spec(Bp/pBp) is precisely (f ∗)−1(p). Since the vertical maps in our
commutative diagram are all injective, this gives the desired homeomorphism.
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